|
Hey folks, This week I have an interesting figure for you from the Financial Times from an e-mail newsletter they distribute each week describing some visualization related to climate change. Before reading further, go ahead and spend a few minutes with the image. What does it say to you? What do you like? What don’t you like about it? How do you think you would go about making it in R? I’d encourage you to write down any of your answers to these questions before reading what I have to say. It would be awesome if you could send me your responses just to get a sense of what other people see (feel free to reply to this email!) What does it say to me? I like the declarative title that “China accounts for almost a third of the current global emissions with a cumulative share of 16%”. What do you like? I’m not a huge fan of stacked area plots, but they did a nice job of focusing on a set of countries/regions of interest. Too often I see people try to include too many categories leading to too many colors, which makes it impossible to know which color belongs to each country. What don’t you like? All that being said, I think the legend could have been better embedded into the panels so that one doesn’t have to scan back and forth. Also, the colors are basically reddish and greenish. I get that EU27, Russia, and UK are all European-ish and could be similar colors. But why are China and US similar colors? In addition to labelling the areas directly, I’d try to pick five distinct colors. How would I make this in R? Good question! I can think of a hack approach and a more elegant approach. The hack would be to create two sets of data that are either scaled by year or over the past 175 years. Then I would use The more elegant approach would be to use Regardless of the approach to making the two panels, each panel has a stacked area plot. We can use Happily, I was able to find the data! If you go to the data hub of the Global Carbon Budget, we can download an To get the data into R, I’d use the This would be my general approach. What did you come up with? Any preference for trying to do this with
|
Hey folks, Did you miss me last week? Friday was the day after the US Thanksgiving holiday and I just couldn’t get everything done that I needed to. The result was an extra livestream on the figure I shared in the previous newsletter. If you haven’t had a chance to watch the three videos (one critique, a livestream, and another livestream) from that figure, I really encourage you to. In the first livestream I made an effort to simplify the panels as a set of facets. Towards the end a viewer...
Hey folks, Did you know that you can do statistics in R? HA! Of course it is. As the first sentence of its Wikipedia entry says, “R is a programming language for statistical computing and data visualization”. I rarely discuss using R for statistical analysis and focus far more attention on the data visualization power of R. This week, I’d like to share a set of panels from a figure in a paper recently published in Nature, “Lymph node environment drives FSP1 targetability in metastasizing...
Hey folks, I’ve really enjoyed the flow of combining these newsletters with a Monday critique video, a Wednesday recreation video, and occasionally a Friday remake video. A few weeks in, I feel pretty good about our ability to engage in constructive critiques. Of course, we have to train ourselves (myself included) to use those tools and not just resort to immediate and emotional responses - “I hate that plot”. We need to engage, get in the head of the original creator, and try to understand...