|
Hey folks, In last week’s newsletter, I introduced a new approach that I plan on taking in these emails to help you develop your intuition with visualizing data in R (or any language). I asked you to consider a random figure that I found in the most recent issue of the journal mSphere. It’s Figure 1A from the paper, “Exploring novel microbial metabolites and drugs for inhibiting Clostridioides difficile” by Ahmed Abouelkhair and Mohamed Seleem. The figure shows the level of inhibition of bacterial growth by 527 compounds; 63 of the compounds were deemed “strong hits” because they inhibited growth by at least 90%. Without worrying about actual code, I encouraged you to think about the data and functions you’d need to generate this figure. Here were my random thoughts: This is a scatter plot with compounds giving more than 90% inhibition were a burgundy color and those with less were given a green color. There’s also a dashed line indicating the 90% threshold. It took me a minute or two to notice that the x-axis is meaningless. It’s likely the order of the compounds in their database (there seems to be a non-random pattern to the data about 3/4th the way across the axis). I also noticed that there’s no line on the x-axis, but there is a line at zero. Those are the parts of the figures, described in a way that you could probably use to make a similar looking figure with any tool. Now, how would we do this in R? Let’s start with the data. I assume that the data will be a data frame with two columns, one for the compound name ( I do everything in ggplot2 nowadays, so I start thinking about what geom I’ll use. Probably Next, I’d think about the colors. I’d use Let’s move on to the x-axis and the two lines. First, I’d use the Now let’s think about the y-axis. By default we might get the values on the y-axis that the figure already has. But to be safe, we can use I think that’s everything, right? I’d encourage you to go back through that narrative and assess what you do and don’t understand. Then look at online R resources, including my Riffomonas materials (MinimalR and generalR) and the R Graphics Cookbook for examples of how to use the new concepts. Finally, see if you can generate the figure yourself using some simulated data. The code below should be close enough to what you need:
Please let me know how this works out for you! Also, if you have a favorite figure that you'd love to see me break down, reply to this email and I'll see about using it in a future newsletter
|
Hey folks, Did you know that you can do statistics in R? HA! Of course it is. As the first sentence of its Wikipedia entry says, “R is a programming language for statistical computing and data visualization”. I rarely discuss using R for statistical analysis and focus far more attention on the data visualization power of R. This week, I’d like to share a set of panels from a figure in a paper recently published in Nature, “Lymph node environment drives FSP1 targetability in metastasizing...
Hey folks, I’ve really enjoyed the flow of combining these newsletters with a Monday critique video, a Wednesday recreation video, and occasionally a Friday remake video. A few weeks in, I feel pretty good about our ability to engage in constructive critiques. Of course, we have to train ourselves (myself included) to use those tools and not just resort to immediate and emotional responses - “I hate that plot”. We need to engage, get in the head of the original creator, and try to understand...
Hey folks! I’m appreciating the positive feedback on Monday critique videos. They’re a lot of fun to think through and make. I think I might start looking at figures that are drawn from the scientific literature since many of you found out about me from my science work. Let me know if there are plots or practices that you’d like to see me talk about. I’ll see if I can work them into the queue. Also, if you’re working on developing figures for a presentation, poster, or paper and would like to...