Hey folks, I can’t tell you how much I’ve enjoyed recreating the “data portraits” from the collection of visualizations that WEB DuBois and his colleagues presented at the 1900 Paris Exposition. You can find the entire collection of “data portraits” in a book assembled by Whitney Battle-Baptiste and Britt Rusert (here) or as a collection of plates through the Library of Congress (here). Perhaps this isn’t so obvious to my non-US readers and viewers, but February is Black History month. In December or January, I had the idea to do a couple visuals for February to honor DuBois, his colleagues, and other great Black scientists of yesterday and today. When Executive Orders from the Trump Administration started going off the rails, I doubled down on the DuBois recreation videos. When all is said and done, I’ll have recreated 8 of the ~60 visuals on YouTube. I’m grateful to Battle-Baptiste and Rusert, Anthony Starks and Jason Forrest who have helped popularize efforts to recreate these visuals with modern tooling. I really hope I’ve done the visualizations justice. Please make sure you watch the great presentation by Starks and Forrest that was posted to YouTube in 2021. Frankly, I’m pretty amazed that I’ve been able to recreate these visuals using only the functions loaded with the Recreating fans, bullseyes, spirals, and other odd shapes in R has really taken a lot out of me! This week, I wanted to cover something I thought would be a little “simpler”. Check out this bar plot, which is Plate 9 from the collection. Part of DuBois and his colleagues’ goal in going to Paris was to provide context to his European audience for the situation of Black Georgians and Americans in general. This visual shows the age distribution among Black Georgians relative to the French population. The French population was older than the Black Georgian population. Beyond the story there are a few interesting things about this plot First, this is clearly a bar plot with the categories on the y-axis, the percent of the population on the x-axis, and the race/nationality used to set the color of the bars. This bar plot can be created using Second, instead of including an x-axis, the percentages are embedded in the bars. This can be done with Third, instead of having the legend on the right as we are accustomed to with ggplot2, this legend is directly below the title. We can pull this off with the Finally, the hard part of this figure is the inclusion of the “{“ to group the pairs of bars for each age group. We might be tempted to use A number of DuBois’s other visualizations also use these braces, so I think it is worth learning how to use them. Of course, there’s a package that will do this for us, but where’s the adventure in that!? If you want some data to practice with here you go…
|
Hey folks! The summer is nearly over - where did it go?! Many of us are getting ready to send our kids off to school and start a new academic year. If you’re subscribed to this newsletter, I suspect you are interested in improving your data visualization skills. You can certainly continue to receive this newsletter and watch my weekly livestreams on YouTube for free to help increase those skills. If you want a more concentrated or personalized opportunity to develop your data visualization...
Hey folks! I’d love to have you join me in September for a new approach to teaching workshops that I will be rolling out. For five weeks I’ll be working with two cohorts of you all to improve our data visualization skills. Each week we’ll meet for a two-hour session. These sessions will include instruction on principles and concepts in data visualization and an opportunity to apply this information to visualizations we find in the wild or that you bring to the group. By not talking about...
Hey folks, Are you interested in uping your data visualisation skills? I’m rolling out a new program to help you improve the design of your data visualizations. This program will last 5 weeks starting at the beginning of September. Each session will be two hours long and include a discussion of data visualization principles followed by an opportunity to apply these ideas to your own visualizations. There will be no coding in this program so you can focus more on concepts than implementation....