Hey folks, Earlier this week I sent out an email announcing a new interactive training opportunity. The goal is to provide greater opportunities to hone your skills in a social setting. My experience with leading this approach has been excellent. I can’t wait to have you give it a try with me. Please let me know if you have any questions. Let’s continue on with our efforts to develop intuition about how to recreate plots that we see out in the wild! This week, I found an interesting box and whisker plot in the paper, “Unveiling the importance of heterotrophy for coral symbiosis under heat stress”, published in the journal mBio by Stephane Martinez and colleagues. Their Figures 1 and 2 are the same type of figure. Let’s look at Figure 1 together. I’ll let you wrestle with Figure 2 on your own. Here’s Figure 1: What’s going on in this plot? As we can see the figure has two panels, A and B. These panels are analogous - they’re both box and whisker plots. These plots are great for displaying data that are not normally distributed. For those of you unfamiliar with this type of plot, the black horizontal line across each rectangle (i.e., the “box”) represents the median (i.e., the 50th percentile) and the top and bottom edges of each box represent the 25th and 75th percentiles. The difference between the 27th and 75th percentiles is the inter-quartile range (IQR). The bars extending upwards from the boxes (i.e., the “whiskers”) will extend to an observed point much as 1.5 times the IQR. In the bottom panel, the “32 light” data has a point above the very short whiskers. This is because there was a point just outside the 75th percentile and another point more than 1.5 times the IQR at about 5 on the y-axis. This is an outlier. The stars between pairs of treatments tells us that there was a statistically significant difference between the treatments indicated by the brackets under each star. My suspicion is that the researchers started with a data frame, How would we go about taking this data to generate the two panels? Let’s make them as two separate figures. The easiest way to make the box and whisker plot - or just “boxplot” - is to use One thing to note is that the default fill for the boxes will be white. To get them to be gray, we need to use Of course you can set the labels on the x and y-axes using the There are a couple of other To complete each of the panels, we now need to put the comparison brackets and stars on each comparison. Most people would hunt for a package to do this for them. Because I’m stubborn and like to practice using {ggplot2}, I’d draw them myself. I’d create the brackets using Finally, most people would stop here and assemble the two figures in PowerPoint or some other monstrosity to reproducible research. But we are not most people. Are we?! After saving each figure to its own variable name (e.g., Here’s some code to generate
|
Hey folks! As I’m writing this newsletter the US government is in shutdown mode with no clear signs that things will get going anytime soon. I’ll withhold my own political take except to say that my family has been running without an official budget for about 25 years. I don’t recommend it, but we know basically how much money goes to our mortgage, insurance, groceries, charities, etc. and how much money we generally have left over. Somehow we still are able to spend money on living a pretty...
Hey folks! This week I have a figure for you from the New York Times based on a poll they did with Siena that describes Americans’ sentiments concerning Israel’s actions in their war with Gaza. What does it say to me? This plot is saying that more Americans think that Israel is intentionally killing civilians than they did in December 2023. The change in percentage of people in the other categories seems to decrease accordingly. What do you like? I love slope plots! I think they’re a great...
Hey folks, This week I have an interesting figure for you from the Financial Times from an e-mail newsletter they distribute each week describing some visualization related to climate change. Before reading further, go ahead and spend a few minutes with the image. What does it say to you? What do you like? What don’t you like about it? How do you think you would go about making it in R? I’d encourage you to write down any of your answers to these questions before reading what I have to say....