|
Hey folks, I hope you’re enjoying my new approach of integrating the newsletter with my YouTube videos. The feedback I’ve gotten has been very positive. Thank you! I’d love it if you were to reply to this email with a link to the most recent figure you found in your reading of the literature or popular media. This week, I’m sharing with you Figure 5D from a paper recently published in mSystems by Charlie Bayne and colleagues where they looked at the effect of interactions between tryptophan and copper on the toxicity of colibactin. This toxin is produced by a strain of E. coli that has been associated with colorectal cancer. This specific panel shows that the ClbP enzyme is inhibited by increasing concentrations of copper using a fluorescence-based assay; I think the 7H4M is a control to see if copper effects fluorescence on its own. Anyway, I want to encourage you to ask some questions about any plot you find to help you develop your taste and and think through how you would recreate elements of a plot. What type of plot is this? Aside from the data story, what is interesting about this figure? What do you like about it? What don’t you like about it? Can you outline the steps you would take to generate the figure? What are some of the steps you aren’t sure about and would like to learn? First off, the figure is made up of box plots for two treatments depicting the amount of fluorescence at different dilutions of copper. I think this plot was made in R because of the styling of the legend and the other figures in the paper. It appears to me that the box plots are evenly spaced, which suggests that the authors didn’t map the copper concentration to the x-axis and then dodge the box plots by treatment. I’d likely do this by creating a column of concentration-treatment combinations and map that to the x-aesthetic and the percent fluorescence to the y-axis. I’d also map the treatment to the color of the box plot. Second, assuming I’m correct about how they fashioned the x-axis, it’s likely treated each concentration-treatment combination as a unique treatment. They then re-labelled the x-axis with the concentration. I think I would do this with Third, on top of the box plots they have overlaid their triplicate data for each condition as jittered points. As an aside, I feel like the figure probably should have picked one geom and run with it. As you can see the middle of the three points falls on the median line and the other two points fall on the ends of the box plots’ whiskers. The box plot doesn’t really add much. Anyway, I’d use Finally, they moved the legend inside the plotting window and put a black border around the legend. I like that approach since it frees up room in the plot by getting rid of the right margin where the legend normally sits. By putting a black border around the legend, it says “this is the legend, these box plots are legend glyphs and not data”. Aside from questioning whether we really need the box plots with the raw data, I have some other thoughts about this figure that I’d like to try. First, I’d be interested in trying to plot a line through the mean of the three points for each concentration-treatment combination. I’d color the points and the two line by the treatment. Second, I’d like to try putting the x-axis on a log scale. That’s basically what it is, right? The one problem would be the zero since you can’t have zero on a log scale. If you want to give these ideas a try before I get to them in December, here’s some code to give you a data frame that you could use to play with:
|
Hey folks, Did you know that you can do statistics in R? HA! Of course it is. As the first sentence of its Wikipedia entry says, “R is a programming language for statistical computing and data visualization”. I rarely discuss using R for statistical analysis and focus far more attention on the data visualization power of R. This week, I’d like to share a set of panels from a figure in a paper recently published in Nature, “Lymph node environment drives FSP1 targetability in metastasizing...
Hey folks, I’ve really enjoyed the flow of combining these newsletters with a Monday critique video, a Wednesday recreation video, and occasionally a Friday remake video. A few weeks in, I feel pretty good about our ability to engage in constructive critiques. Of course, we have to train ourselves (myself included) to use those tools and not just resort to immediate and emotional responses - “I hate that plot”. We need to engage, get in the head of the original creator, and try to understand...
Hey folks! I’m appreciating the positive feedback on Monday critique videos. They’re a lot of fun to think through and make. I think I might start looking at figures that are drawn from the scientific literature since many of you found out about me from my science work. Let me know if there are plots or practices that you’d like to see me talk about. I’ll see if I can work them into the queue. Also, if you’re working on developing figures for a presentation, poster, or paper and would like to...