Hey folks, Did you know that March is Women’s History Month? Each year The Economist updates what they call the “Glass Ceiling Index”. This is a measure of “the role and influence of women in the workforce”. It’s an aggregate of ten factors including the gender gap in wages, work force participation, and higher education. Sadly, the article is behind a paywall. They also haven’t made their data publicly available. Regardless, you can get a static copy of the article through archiv.is. Here’s the graphic that appears to most popular when you google for the index. What stands out to you about this figure? To me, it’s interesting that the countries at the top tend to stay at the top and those in the bottom tend to stay at the bottom. The countries in the middle are a bit of a jumbled mess. Poland has taken a nose dive since 2016 while Britain has climbed. The U.S. has been pretty steady between 18th and 20th place. One critique is that this shows the relative trends and not the absolute. All the countries could be getting better on each factor, but we wouldn’t see it here. We’d only see whether a country is improving at the same, better, or worse rate than other countries. Graphically, what stands out to you? What would interest you most to see done in R? Here are my first thoughts… At first glance, this is a line plot with 30 lines. Line plots can be generated using Alternatively, we could try using A second interesting component to the figure is that the lines/polygons are colored according to the ranking from 2024. Normally, we could pull this off with A third element that catches my eye is the order of the lines. They appear to have been laid down on the “plotting canvas” in ranked order. We’ll need to make sure this happens with our recreation. This is the type of thing I’d do with A fourth element that stands out to me is that the countries are ordered on the left side for 2016 and the right side for 2024. The left side is easy enough to do with setting the y-axis text in Finally, the x-axis has the four digit year for 2016 and the last two digits of each year for the even years that follow. That’s easy enough to do with Oof. This is going to be challenging! But, I’m excited to learn more about
|
Hey folks! The summer is nearly over - where did it go?! Many of us are getting ready to send our kids off to school and start a new academic year. If you’re subscribed to this newsletter, I suspect you are interested in improving your data visualization skills. You can certainly continue to receive this newsletter and watch my weekly livestreams on YouTube for free to help increase those skills. If you want a more concentrated or personalized opportunity to develop your data visualization...
Hey folks! I’d love to have you join me in September for a new approach to teaching workshops that I will be rolling out. For five weeks I’ll be working with two cohorts of you all to improve our data visualization skills. Each week we’ll meet for a two-hour session. These sessions will include instruction on principles and concepts in data visualization and an opportunity to apply this information to visualizations we find in the wild or that you bring to the group. By not talking about...
Hey folks, Are you interested in uping your data visualisation skills? I’m rolling out a new program to help you improve the design of your data visualizations. This program will last 5 weeks starting at the beginning of September. Each session will be two hours long and include a discussion of data visualization principles followed by an opportunity to apply these ideas to your own visualizations. There will be no coding in this program so you can focus more on concepts than implementation....